看上去很高深莫测的样子,名副其实会当凌绝顶一览众山小
; ~* ~3 u1 q0 K) G& U. V1 A0 g1 x
% `& H, Z5 I' b! j中国科学技术大学潘建伟团队与上海技物所、新疆天文台等单位合作,首次在国际上实现百公里级的自由空间高精度时间频率传递实验,实验结果有望对暗物质探测、物理学基本常数检验、相对论检验等基础物理学研究产生重要影响。该成果于北京时间10月5日晚在国际学术期刊《自然》杂志发表。
3 ?( ~0 e+ P, X3 W1 m+ h& x, N. S$ V5 }, o# X( ]: g
在科学领域,时间的测量精度已经步入10的负19次方量级,也就是百亿年,误差不到1秒。作为七大基本物理量之一的时间,是目前测量最精确的物理量。 有最精确的计时,还要有与之精度相匹配的时间传递技术,两者同样重要。4 X+ K) G9 c+ R. \8 q
$ F& j/ Y: q# a) \. V* a9 E
地面附近自由空间的环境复杂,大气中的各种扰动和湍流、链路损耗、环境变化等等因素给自由空间中的长距离时频传递带来了极大困难。之前,自由空间中的光频传输技术只能实现10公里量级的传输距离。
% k: o7 P* ]: F; h: p; K# o
# V5 E7 v1 k2 V. C+ W, S中国科学技术大学团队向这一难题发起挑战。在光源方面,研制出高功率高稳定度光梳,在光信号收发信道方面,研制出高稳定性且高效率的光收发望远镜系统,另外采用线性光学采样的干涉测量方式实现高精度的时间测量。经过一系列技术攻关,终于在相隔113公里的新疆南山天文台和高崖子天文台之间实现了万秒10的负19次方量级稳定度的时频传递。2 l' ~5 N' M0 b
& J; ]9 u9 |! f& h& D# ]3 J
中国科学技术大学教授 张强:把我们非常精密的这种时间信号,通过这个望远镜打到这个100公里以外的另外一个望远镜,那边的话,然后我的这个信号被那边的一个同样的一个望远镜接收,接收了之后他们进行一些比较精密的时间探测,然后同时那边也会打一个同样的一个精密的光源信号也打过来,在这边也做一个同样的一个精密探测,然后两边的信号再做一个对准,做一个校正。# d$ v: ~- l H: V7 S' K+ ~
% F! p) C2 b- M' R时间的精确测量和传递,将使人们能够对相对论原理、各种引力理论、暗物质模型等等基础物理进行实验检验。+ b. p, }) x. D8 E% k" [
) p, \& d# |' k9 ?7 Q+ b- D( t! D" P
同时这也和我们的生活密切相关,例如,卫星的导航精度与计时精度紧密相关,要想定位更准确,比如精确到毫米以下,就需要更好的计时精度。在大地测量、地质勘探、雷达探测等等涉及社会民生的领域,精确的时间也都将发挥重要作用。( k8 o, ^, s X/ h5 M# t" M
6 ~ s' z0 @4 W- h1 ^现在“秒”的定义是1967年确定的,经过几十年的发展,国际计量组织计划2026年讨论“秒”定义的变更。
/ ]3 I. N. G& h( A K3 k: b9 X; H. S) ]( m! x
中国科学技术大学教授 张强:那么它也证明了就是说将来放在卫星上,可以基于卫星来做这种洲际的这种(时间)比对。那么如果能够实现洲际的比对的话,那么我们就可以实现新一代的这个“秒”定义。
/ S `% {8 G; j: M0 h
* n8 t3 ^! F4 v% B. X+ B |